The search functionality is under construction.

Author Search Result

[Author] Chen CHEN(24hit)

21-24hit(24hit)

  • Efficient Implementation of OFDM Inner Receiver on a Programmable Multi-Core Processor Platform

    Wenhua FAN  Chen CHEN  Yun CHEN  Zhiyi YU  Xiaoyang ZENG  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1241-1248

    This paper presents an efficient implementation of OFDM inner receiver on a programmable multi-core processor platform with CMMB as an application. The platform consists of an array of programmable SIMD processors interconnected in a 2-D mesh network, which can provide high performance and is quite suitable for wireless communication applications. Implemented on one cluster with 8 cores, the receiver includes symbol timing, carrier frequency offset and sampling frequency offset synchronization, channel estimation and equalization. Multiple optimization techniques are explored to improve system throughput such as: task-level parallelism on many cores, data-level parallelism on SIMD cores, minimization of memory access and route-length-minimization task mapping techniques. Besides, efficient memory strategy and specific instructions for complex computation increase the performance. The simulation results show that the inner receiver could achieve a throughput of up to 120 Mbps when operating at 750 MHz.

  • Personalized Recommendation of Item Category Using Ranking on Time-Aware Graphs

    Chen CHEN  Chunyan HOU  Peng NIE  Xiaojie YUAN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2015/01/19
      Vol:
    E98-D No:4
      Page(s):
    948-954

    Recommendation systems have been widely used in E-commerce sites, social media and etc. An important recommendation task is to predict items that a user will perform actions on with users' historical data, which is called top-K recommendation. Recently, there is huge amount of emerging items which are divided into a variety of categories and researchers have argued or suggested that top-K recommendation of item category could be very beneficial for users to make better and faster decisions. However, the traditional methods encounter some common but crucial problems in this scenario because additional information, such as time, is ignored. The ranking algorithm on graphs and the increasingly growing amount of online user behaviors shed some light on these problems. We propose a construction method of time-aware graphs to use ranking algorithm for personalized recommendation of item category. Experimental results on real-world datasets demonstrate the advantages of our proposed method over competitive baseline algorithms.

  • Dual-Task Integrated Network for Fast Pedestrian Detection in Crowded Scenes

    Chen CHEN  Huaxin XIAO  Yu LIU  Maojun ZHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/19
      Vol:
    E103-D No:6
      Page(s):
    1371-1379

    Pedestrian detection is a critical problem in computer vision with significant impact on many real-world applications. In this paper, we introduce an fast dual-task pedestrian detector with integrated segmentation context (DTISC) which predicts pedestrian location as well as its pixel-wise segmentation. The proposed network has three branches where two main branches can independently complete their tasks while useful representations from each task are shared between two branches via the integration branch. Each branch is based on fully convolutional network and is proven effective in its own task. We optimize the detection and segmentation branch on separate ground truths. With reasonable connections, the shared features introduce additional supervision and clues into each branch. Consequently, the two branches are infused at feature spaces increasing their robustness and comprehensiveness. Extensive experiments on pedestrian detection and segmentation benchmarks demonstrate that our joint model improves the performance of detection and segmentation against state-of-the-art algorithms.

  • Concurrent Transmission Based on Channel Quality in Ad Hoc Networks: A Game Theoretic Approach

    Chen CHEN  Xinbo GAO  Xiaoji LI  Qingqi PEI  

     
    PAPER

      Vol:
    E95-D No:2
      Page(s):
    462-471

    In this paper, a decentralized concurrent transmission strategy in shared channel in Ad Hoc networks is proposed based on game theory. Firstly, a static concurrent transmissions game is used to determine the candidates for transmitting by channel quality threshold and to maximize the overall throughput with consideration of channel quality variation. To achieve NES (Nash Equilibrium Solution), the selfish behaviors of node to attempt to improve the channel gain unilaterally are evaluated. Therefore, this game allows each node to be distributed and to decide whether to transmit concurrently with others or not depending on NES. Secondly, as there are always some nodes with lower channel gain than NES, which are defined as hunger nodes in this paper, a hunger suppression scheme is proposed by adjusting the price function with interferences reservation and forward relay, to fairly give hunger nodes transmission opportunities. Finally, inspired by stock trading, a dynamic concurrent transmission threshold determination scheme is implemented to make the static game practical. Numerical results show that the proposed scheme is feasible to increase concurrent transmission opportunities for active nodes, and at the same time, the number of hunger nodes is greatly reduced with the least increase of threshold by interferences reservation. Also, the good performance on network goodput of the proposed model can be seen from the results.

21-24hit(24hit)